Second-order susceptibility from a tight-binding Hamiltonian
نویسندگان
چکیده
منابع مشابه
Second-Order Susceptibility from a Tight-Binding Hamiltonian
Using a new formalism that modiies a tight-binding Hamiltonian to include interaction with a time-dependent electromagnetic eld, we have obtained an analytical expression for the second-order susceptibility. This expression has been used to calculate the energy dependence of (2) (!) for GaAs. The results are in agreement with previous calculations and with available experimental data.
متن کاملOrder-N method for a nonorthogonal tight-binding Hamiltonian
We have developed an order-N method to calculate the total energy and atomic forces for a nonorthogonal tight-binding Hamiltonian. We have first confirmed the validity of our approach by comparing our results with the exact calculation for a small silicon cluster. The efficiency of our approach for a large system is demonstrated by determining the equilibrium configuration of a Si1000 cluster u...
متن کاملTight-binding Hamiltonian from first-principles calculations
The tight-binding method attempts to represent the electronic structure of condensed matter using a minimal atomic-orbital like basis set. To compute tight-binding overlap and Hamiltonian matrices directly from first-principles calculations is a subject of continuous interest. Usually, first-principles calculations are done using a large basis set or long-ranged basis set (e.g. muffin-tin orbit...
متن کاملTight-binding Hamiltonian for LaOFeAs
First-principles electronic structure calculations have been very useful in understanding some of the properties of the new iron-based superconductors. Further explorations of the role of the individual atomic orbitals in explaining various aspects of research in these materials, including experimental work, would benefit from the availability of a tight-binding(TB) Hamiltonian that reproduces ...
متن کاملOn Second Order Hamiltonian Systems
The aim of the paper is to announce some recent results concerning Hamiltonian theory. The case of second order Euler–Lagrange form non-affine in the second derivatives is studied. Its related second order Hamiltonian systems and geometrical correspondence between solutions of Hamilton and Euler–Lagrange equations are found.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 1998
ISSN: 0163-1829,1095-3795
DOI: 10.1103/physrevb.58.15340